OPN-9840, a non-covalent potent pan-TEAD inhibitor, exhibits single agent efficacy in preclinical malignant mesothelioma models

P Chen¹, B Matusow¹, J Tsai², P Li², H Nguyen¹, G Habets¹, G Bollag¹, S Chowdhury¹

TEAD inhibitors block tumor growth and overcome therapy resistance

The Hippo pathway regulates critical cellular processes during development. In ~10% of human cancers, Hippo pathway dysregulation results in YAP/TAZ overactivation and increased TEADdependent transcription that promotes tumor growth and therapy resistance- often by supporting drugtolerant persister survival. In 40% of malignant mesotheliomas (MM), neurofibromatosis (NF2) gene mutations inactivate the Merlin protein, an upstream negative regulator of TEAD. Preclinical studies indicate high TEAD dependency in NF2-mutant MM. We have discovered an array of potent covalent and non-covalent small molecule inhibitors that occupy the palmitate-binding pocket of TEAD proteins, with varying paralog selectivity profiles.

OPN-9840 is an orally active, non-covalent pan-TEAD inhibitor displaying dose-dependent and on-target in vitro and in vivo efficacy for NCI-H226, an NF2-mutant MM cell line. Additionally, OPN-9652 is an orally active covalent compound from a separate chemical series to OPN-9840. We present data here to demonstrate monotherapy and combination efficacies of both compounds in preclinical MM models.

OPN-9840 and OPN-9652 are potent pan-TEAD small molecule inhibitors

Compound		Brotoin Thormo	l Shift dTm (0C)	Cellular			
		Protein Therma		Reporter (µM)	Proliferation (µM)		
	TEAD1	TEAD2	TEAD3	TEAD4	MSTO-211H	NCI-H226	NCI-H2052
OPN-9840	10	10	10	10	0.244	0.24	1.02
OPN-9652	10	20	20	6	0.014	3.40	2.74

Both OPN-9840 and OPN-9652 are pan-TEAD inhibitors based on protein thermal shift assay data. In MSTO-211H cells, both compounds inhibit a TEAD-dependent luciferase reporter with submicromolar activities. In 5-day cell proliferation assays, cell viability is measured with CellTiter-Glo. While both compounds impair proliferation of the NF2-deficient mesothelioma cell lines, NCI-H226 and NCI-H2050, OPN-9840 displays improved pharmaceutical properties.

OPN-9840 is safe and has brain penetration potential

Parameter		Cytotox	icity (μM)	Phototoxicity (PIF ratio)	BBB PAMPA (-Log P _e)
		HEK293T	Hep G2		
OPN-9840		>50	>50	1.02	4.73

OPN-9840 shows no in vitro cytotoxicity in HEK293T or Hep G2 cells after 1 or 3 day(s) of incubation. Photo-irritancy factor (PIF) of 1.02 indicates no phototoxicity. Blood-brain barrier (BBB) specific parallel artificial membrane permeability assay (PAMPA) reveals high BBB penetration potential. Overall, OPN-9840 has a favorable safety profile and is likely brain penetrant.

250-200-**(b**) **t** 20-

Combined TEAD and MAPK inhibition synergistically suppresses YAP/TAZ and E2F targets in NCI-H226 tumors

OPN-9652	50
Compound	Dose (mg/kg)
	SIGNALING_VIA_ PROTEIN_RESPO UV_RESPONS DBIOTIC_METABC
REACTIVE_OXYGE	SPERMATOGEN
	MYC_TARGET MYC_TARGET MYOGEN E_PHOSPHORYLA
	KRAS_SIGNALING MITOTIC_SPII MTORC1_SIGNA
	N_ALPHA_RESPO J_GAMMA_RESPO KRAS_SIGNALINO
IL6_J INFLA	IL2_STAT5_SIGNA AK_STAT3_SIGNA MMATORY_RESPO
	G2M_CHECKP GLYCOI HYP
	EN_RESPONSE
	APOPT
	LOGRAFT_REJEC

Affiliations: ¹Opna Bio LLC South San Francisco, CA, ²Plexxikon Inc. South San Francisco, CA Please email questions to: pchen@opnabio.com

RESULTS

OPN-9840 exhibits dose-dependent and on-target antitumor activity in NCI-H226 xenograft tumors

NCI-H226

dose-dependent antitumor activity in NCI-H226 xenograft tumors. No body weight loss is observed in any dose group. High oral exposure is achieved at all dose levels (AUC_{0.24}>100,000h·ng/mL) after 14 days. VT-103 is used as a literature tool compound (Tang et al., Mol Cancer Ther 2021).

Pharmacodynamic analysis of tumors harvested 4 or 8 hours after the final compound administration shows significantly decreased expression of TEAD target genes, CTGF and CYR61, in OPN-9840and VT-103-treated NCI-H226 xenograft tumors. 15 or 50mg/kg of **OPN-9840** results in >50% of target gene expression reduction.

TGI (%)	BWC (g)
99.1	1.3
74.34	-1.7
133.8	0.6

Combined dosing of OPN-9652 and trametinib (14-day PO) results in NCI-H226 xenograft tumor regression. RNA-Seq and GSEA analyses of tumors harvested 24 hours after the final dose administration reveal enhanced cell cycle pathway downregulation and synergistic inhibition of YAP/TAZ and E2F downstream targets in the combination treatment group. The combination is well tolerated as no body weight loss is observed in mice.

50/1

Combination

CPNABIO

Abstract number: 7264

Co-crystal structure of OPN-9652 bound to TEAD1

Co-crystal structure of OPN-9652 bound to TEAD1 (residues 209-426) was solved to 2.03Å resolution (PDB ID: 8S6Y). OPN-9652 occupies the central palmitate-binding pocket and covalently modifies Cys359 on TEAD1 protein. Figure on the left shows an overlay of OPN-9652 (gold) and palmitate (green) in the central pocket of TEAD1. Zoomed in figure on the right shows covalent modification of Cys359 (mint) by OPN-9652 (gold).

CONCLUSIONS:

- ✓ OPN-9840 and OPN-9652 are orally active, potent pan-TEAD small molecule inhibitors.
- ✓ OPN-9840 non-covalently and OPN-9652 covalently bind to the central palmitate-binding pocket of TEAD proteins.
- ✓ OPN-9840 is safe and has brain penetration potential.
- ✓ OPN-9840 as monotherapy shows on-target and dose-dependent *in vivo* efficacy for MM, achieving high exposure and tumor regression with oral daily dosing in mice.
- ✓ Gene expression profiling of OPN-9652 and trametinib combination-treated tumors reveals synergistic inhibition of YAP/TAZ and E2F targets.
- ✓ Further development of OPN-9840 as monotherapy and in combination with other agents in MM as well as additional oncology indications is planned.

opnabio.com