OPN-6602, a dual EP300/CBP bromodomain inhibitor modulates androgen-driven transcription in mCRPC

B Matusow¹, W Spevak², C Zhang², Y Ma², R Shellooe², J Tsai², P Li², A Kohler¹, P Chen¹, G Habets¹, C Nichols¹, P Singh¹, K Inokuchi¹, J Walling¹, J Halladay², G Bollag¹

Affiliations: ¹Opna Bio LLC South San Francisco, CA, ²Plexxikon Inc. South San Francisco, CA

OPN-6602 and **OPN-6742** downregulate the androgen receptor (AR) pathway

OPN-6602 and OPN-6742 are potent, orally active small molecule dual E1A Binding Protein P300 (EP300) and CREB Binding Protein (CBP) inhibitors. OPN-6602 and OPN-6742 regulate gene transcription via chromatin remodeling. Histone acetyltransferase (HAT) EP300 is a transcriptional coactivator of androgen receptor (AR). EP300 bromodomain (BRD) inhibition partially blocks its HAT activity, reducing AR-mediated gene expression and tumor growth.

Mechanism of Action in metastatic Castration-Resistant Prostate Cancer (mCRPC): EP300 is an attractive target in mCRPC as it mediates AR-dependent and -independent transcription factor function. OPN-6602 and OPN-6742 abrogate persistent AR signaling in mCRPC by modulating H3K27 acetylation and the recruitment of EP300, AR-FL, and AR-v7 to AR response elements. OPN-6602 and OPN-6742 inhibit EP300 bromodomain activity leading to downregulation of the AR pathway and to anti-tumor effects in AR dependent mCRPC.

Potent EP300/CBP AR-dependent inhibition and selectivity against other bromodomains with OPN-6602 and OPN-6742

Compound	Biochemical (nM)			Cellular					
				Acetylation (nM)	Proliferation (nM)				
	EP300	СВР	Selectivity BRD4	LK2 H3K27Ac	VCaP	LNCaP	22rV1	DU145	
OPN-6742	13	18	277	51	146	392	2,663	5,425	
OPN-6602	28	31	>286	7	6	6	940	>10,000	

Dual EP300/CBP BRD inhibition by OPN-6602 and OPN-6742 based on biochemical screens using AlphaScreen technology. Cell viability was measured using CellTiter Glo. Both compounds show an AR-selective mode of action with anti-proliferative activity in AR-dependent prostate cancer cell lines (e.g. VCaP, LNCaP, and 22Rv-1) but are inactive against AR-negative prostate cancer cell lines (e.g. DU145).

OPN-6602 BROMOscan

DiscoverX TREESpot of OPN-6602 evaluated against 40 BRDs Selectivity for EP300/CBP against BRD2, 3, and 4 is >100-fold.

OPN-6602 Sensorgram

OPN-6602 sensorgram from surface plasmon resonance (SPR) analysis. OPN-6602 displayed high affinity for EP300 bromodomain (KD = 0.87 nM) as a result of having a fast on-rate and slow off-rate.

Dose-dependent anti-tumor activity in VCaP xenograft model with OPN-6602 and OPN-6742

OPN-6602

1.3E-03

0.87

13

8.8

Please email questions to: bmatusow@opnabio.com

RESULTS

Synergy between OPN-6602 and enzalutamide in mCRPC PDX with corresponding pharmacodynamic responses

Compd.	Do (mg	se /kg)	т GI (%)	TGIn (%)
Control	+	-	-	-
OPN-6602	ŧ	3	9	13
	-	10	58	81
	+	30	79	108
OPN-6742	4	5	-2	-3
	\	15	26	36
	~	50	79	109

OPN-6602 and OPN-6742 treatment resulted in dose-dependent antitumor activity in a VCaP Xenograft in castrated mice.

Pharmacokinetic profiles show a high Cmax and short half-life following oral administration of OPN-6602 and OPN-6742 in mice.

Abstract number: 35441

Crystal structure of OPN-6742 bound EP300

The crystal structure of EP300 BRD (residues 1047-1161) bound to OPN-6742 was solved to 1.7Å resolution. OPN-6742 binds a predominantly hydrophobic pocket distal to the N- and C-termini and formed by three helices. Two key polar interactions were identified, Asn1132 and Arg1137, which help to anchor OPN-6742 in the binding pocket.

CONCLUSIONS:

- ✓ OPN-6602 and OPN-6742 are orally bioavailable, highly potent and selective EP300/CBP inhibitors.
- **→** Based on safety, PK, and preclinical animal model data, OPN-6602 is favored for oral once daily dosing.
- ✓ In the preclinical human mCRPC models **OPN-6602** suppresses tumor growth.
- $\langle \boldsymbol{v} \rangle$ RNA profiling shows a marked, dose-dependent, pharmacodynamic response indicative of EP300/CBP inhibition.
- **(v)** Further development of OPN-6602 as a single agent and in combination with other agents in mCRPC and other oncology indications is planned.
- ✓ A first-in human study of OPN-6602 in cancer patients is scheduled to start in 2024.

opnabio.com

CPNABIO